# Chesapeake Bay Program Tidal Monitoring Network Design And Criteria Assessment Methodology

### Richard Batiuk

Associate Director for Science
U.S. Environmental Protection Agency
Chesapeake Bay Program Office
Annapolis, Maryland



### **Overview of Presentation**

- Spatial/Temporal Scale of Criteria Assessment
- Tidal Monitoring Network Design
- Shallow-Water Monitoring Effort
- Rationale for Criteria Assessment Methodology
- Analytical Framework for Criteria Assessment

### **Objective**

Define a set of tools that can be used to support criteria attainment decisions based on:

- 1. Magnitude of Criteria Exceedence
- 2. Spatial and Temporal Extent of Criteria Exceedance
- 3. Statistical Significance of Criteria Exceedence

# The Challenge

- Magnitude
- Duration
- Frequency
- Space
- Time

# Spatial/Temporal Scales of Criteria <u>Assessment</u>



# Designated Uses for Chesapeake Bay

A. Cross Section of Chesapeake Bay or Tidal Tributary



B. Oblique View of the "Chesapeake Bay" and its Tidal Tributaries



# Application of Water-Quality Criteria

|                                      | Dissolved<br>Oxygen | Chlorophyll<br>a | Water<br>Clarity |
|--------------------------------------|---------------------|------------------|------------------|
| Migratory<br>Spawning and<br>Nursery | X                   | X                |                  |
| Shallow Water                        | X                   | X                | X                |
| Open Water                           | X                   | X                |                  |
| Deep Water                           | X                   |                  |                  |
| Deep Channel                         | X                   |                  |                  |

# **Spatial Extent of Tidal Monitoring**



Fixed-Station
Water-Quality Monitoring
Network

in Relation to the

Open Water, Deep Water and Deep Channel

Designated Uses



Fixed-Station
Water-Quality
Monitoring Network

in Relation to the

Migratory and Spawning Designated Use



Fixed-Station
Water-Quality Monitoring
Network

in Relation to the

Shallow Water Designated Use



# **Interpretation Of Fixed-Station Data**



### Tidal Water-Quality Monitoring Network Design



### **Objectives of Tidal Monitoring**

- A. Characterization, Status
  - Water-Quality Criteria
  - Nutrient Reduction Goals
  - Biological and Ecological Indicators
- B. Temporal Changes Long-Term Trends
- C. Tidal Water-Quality Modeling
- D. Understanding of Processes Related to the Attainment of Water-Quality Criteria and Other Restoration Goals

# **Tidal Monitoring Framework**

### Objective: Characterization, Status - Criteria Attainment

|                                | Dissolved Oxygen                                                                                                                  | Chlorophyll a                                                                                   | Clarity                                                                                      |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Migratory Spawning and Nursery | Fixed-Station Network  — Spatially enhance where needed Buoy System — Strategically located                                       | Fixed-Station Network - To cover open-water areas                                               |                                                                                              |
| Shallow Water                  | Probability-Based Network  — Base-line spatial extent  DataFlow — Episodic / Strategic Basis  Buoy System — Strategically located | Probability-Based Network - To cover shallow-water areas  DataFlow – Episodic / Strategic Basis | Probability-Based Network  – Base-line spatial extent  DataFlow – Episodic / Strategic Basis |
| Open Water                     | Fixed-Station Network  - Spatially enhance where needed  Buoy System – Strategically located                                      | Remote Sensing  – Map the spatial extent of blooms                                              |                                                                                              |
| Deep Water                     | Current Fixed-Station Network  Buoy System – Strategically located                                                                |                                                                                                 |                                                                                              |
| Deep Channel                   | Current Fixed-Station Network Buoy System – Strategically located                                                                 |                                                                                                 |                                                                                              |

# Potential Approaches for Tidal Monitoring

- A. Buoy Systems
  - \* Potential Need Dissolved Oxygen Criteria
- B. Probability-Based Monitoring
  - \* Potential Need Shallow-Water Monitoring
- C. Fixed-Station Monitoring
  - \* Potential Need All Objectives, Some Designated Uses
- D. Continuous Underway Monitoring Systems
  - \* Potential Need Detailed Spatial Assessment
- E. Remote Sensing (Aerial Over-flights, Satellite Imagery)
  - \* Potential Need Chlorophyll Criteria Attainment

# **Shallow Water Monitoring**

# Rationale for Shallow-Water Monitoring Design

- Little Prior Knowledge
- Can be Extremely Dynamic
- High Spatial Variability
- Critical Habitat
- Most Fish Kills

# Buoy Data for Continuous DO Measurements Severn River at Ben Oaks





### **Medium Tributary**



- Existing Fixed Stations
- Spatially Intensive Data Collection
- Continuous Buoys

# Components of Shallow-Water Monitoring Design

- Fixed-Station Continuous Temporally Intensive
  - Dissolved oxygen
  - Fluorescence
  - Turbidity
  - Water temperature
  - Salinity
  - pH
- Water-Quality Mapping Spatially Intensive
  - Dissolved oxygen
  - Fluorescence
  - Turbidity
  - Water temperature
  - Salinity

# **Continuous Underway Monitoring**





# Value of Water Quality Mapping for Identifying SAV Habitat







# Current Shallow-Water Monitoring Plans

- Current Funding Allows for Shallow-Water Monitoring in 16 (out of ~ 100) Segments
- Selected Segments Include 10 in MD, 6 in VA
  - Maryland Severn, Magothy, Patuxent, Bush, Gunpowder, Middle, Chicamacomico and Chester
  - Virginia York, Mattaponi, Pamunkey
- At the Current Rate, A Full Assessment Will Not Be Completed Until 2020

# Rationale for Criteria Assessment Approach



Conceptual Example 1 - One Fixed Station per Segment

Fixed-Station Network

Actual Spatial Distribution of Parameter





Conceptual Example 2 - Multiple Fixed Stations per Segment

Fixed-Station Network

Actual Spatial Distribution of Parameter





Conceptual Example 3 – Use of Stations Outside of Segment

Fixed-Station Network

Actual Spatial Distribution of Parameter



Conceptual Example 4 – Use of New Technologies

Fixed-Station Network

Actual Spatial Distribution of Parameter





# Analytical Approach for Criteria Assessment



# Approach for Defining Attainment of Criteria and Designated Uses

- 1. Develop an analytical tool that uses available data to account for spatial and temporal variability in criteria exceedence.
- 2. Analytical tool should be able to incorporate and benefit from different types of data including data collected using new technologies.
- 3. Analytical tool should provide a precise rule for deciding if a given segment is attaining its designated use.

# Steps for Developing a CFD

Step 1: Interpolate the Bay water quality monitoring data for each sampling event (e.g., cruise)

Station



Step 2. Evaluate interpolated WQ monitoring data interpolator cell by cell using the appropriate criterion



# Step 3. Identify the cells in a CBP segment / designated use area that exceed the criteria for each sampling event



Step 4. Repeat Step 3 for each sampling event in assessment period ...



Step 5. Compile the measures of % area (%volume) exceeding the criteria. This quantifies the SPATIAL EXTENT of the exceedences in a segment for each sampling event.

Example
Assessment
Over A
Three Year
Assessment
Period

| Month  | (%Volume) Exceeding |
|--------|---------------------|
| Mar-98 | 72.0000             |
| Apr-98 | 55.0000             |
| May-98 | 65.0000             |
| Jun-98 | 75.0000             |
| Mar-99 | 49.0000             |
| Apr-99 | 34.0000             |
| May-99 | 67.0000             |
| Jun-99 | 25.0000             |
| Mar-00 | 20.0000             |
| Apr-00 | 39.0000             |
| May-00 | 35.0000             |
| Jun-00 | 50.0000             |

% Area

### Step 6. Sort and rank the measures of % area/volume of criteria exceedence

Example
Assessment
Over A
Three Year
Assessment
Period

|        | % Area<br>(%Volume) |      |  |
|--------|---------------------|------|--|
| Month  | Exceeding           | Rank |  |
| Jun-98 | 75.0000             | 1    |  |
| Mar-98 | 72.0000             | 2    |  |
| May-99 | 67.0000             | 3    |  |
| May-98 | 65.0000             | 4    |  |
| Apr-98 | 55.0000             | 5    |  |
| Jun-00 | 50.0000             | 6    |  |
| Mar-99 | 49.0000             | 7    |  |
| Apr-00 | 39.0000             | 8    |  |
| May-00 | 35.0000             | 9    |  |
| Apr-99 | 34.0000             | 10   |  |
| Jun-99 | 25.0000             | 11   |  |
| Mar-00 | 20.0000             | 12   |  |

Step 6. Calculate the cumulative probability values based on the ranks % Area Cumulative

| Month  | Exceeding | Rank | (Rank/n+1 |
|--------|-----------|------|-----------|
|        | 100.0000  |      | 0.0000    |
| Jun-98 | 75.0000   | 1    | 7.6923    |
| Mar-98 | 72.0000   | 2    | 15.3846   |
| May-99 | 67.0000   | 3    | 23.0769   |
| May-98 | 65.0000   | 4    | 30.7692   |
| Apr-98 | 55.0000   | 5    | 38.4615   |
| Jun-00 | 50.0000   | 6    | 46.1538   |
| Mar-99 | 49.0000   | 7    | 53.8462   |
| Apr-00 | 39.0000   | 8    | 61.5385   |
| May-00 | 35.0000   | 9    | 69.2308   |
| Apr-99 | 34.0000   | 10   | 76.9231   |
| Jun-99 | 25.0000   | 11   | 84.6154   |
| Mar-00 | 20.0000   | 12   | 92.3077   |
|        | 0.0000    |      | 100.0000  |

(%Volume)

**Probability** 

### Step 7. Plot the % area in exceedence vs. cumulative probability over time

## **Example Assessment Over A Three Year Assessment Period**



### Use of CFD's for Characterizing Spatial and Temporal Extent of Criteria Exceedence



Can we go beyond 10% towards something more reflective/protective of the living resources?



# Deep Water Dissolved Oxygen Criteria Reference Curve





#### **Definition of Attainment**



### Definition of Attainment: Any Excursion Above the Reference Curve





#### Definition of Attainment Kolmogorov-Smirnov Test



## Map Magnitude of Exceedence

Express criteria exceedence in terms of percent of criteria value evaluated over the assessment period and illustrated spatially



#### **Tools For Defining Attainment**

#### Magnitude of Exceedence



Spatial and Temporal Extent of Exceedence



Statistical Significance

Statistical

**Test**